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The main goal of this paper is to clarify the spatial instability of a piecewise linear 
free shear flow. We do this by obtaining numerical solutions to the Orr-Sommerfeld 
equation at high Reynolds numbers. The velocity profile chosen is very much like 
a piecewise linear one, with the exception that the corners have been rounded so that 
the entire profile is infinitely differentiable. We find that the (viscous) spatial 
instability of this modified profile is virtually identical to the inviscid spatial 
instability of the piecewise linear profile and agrees qualitatively with the inviscid 
results for the tanh profile when the shear layers are convectively unstable. The 
unphysical features, previously identified for the piecewise linear velocity profile, 
arise only when the flow is absolutely unstable. In  a nutshell, we see nothing wrong 
with the inviscid spatial instability of piecewise linear shear flows. 

1. Introduction 
With the use of high-speed digital computers, the calculation of the spatial 

eigenvalues of the Orr--Sommerfeld equation is a reasonably straightforward task, 
although not necessarily without difficulties. Such calculation usually leads to several 
different curves of spatial instability in complex wavenumber space, k, along which 
wR = Re ( w )  = 0, where w = w ( k )  is the dispersion relation (Huerre & Monkewitz 
1985 figure 3 b ) .  [Note the modal time dependence is of the form exp ( w t ) ;  i = ( -  1)i 
is omitted from the exponent.] In order to determine which of these spatial instability 
curves is relevant physically, the initial value problem must be solved; typically this 
involves the use of Fourier transforms and certain contour deformations in complex 
wavenumber space. In  order to carry out these deformations with reasonable 
certainty and rigour, the dispersion relation (its singularities, behaviour at  infinity, 
etc.) must be known for all complex wavenumbers; the obvious limitation of any 
numerical approach is then immediately apparent. 

Clearly what is needed, a t  least in model problems, is an analytic expression for 
the dispersion relation, and this can usually be obtained for highly idealized velocity 
profiles consisting of straight line segments. Rayleigh himself examined the temporal 
instability of a piecewise linear shear flow (figure 1) in the inviscid limit (Rayleigh 
1945 p. 392) and concluded that ‘diminution of wave-length below a certain value 
is accompanied by an instability which gradually decreases, and is finally exchanged 
for actual stability ’. The stability to which Rayleigh is referring is precisely neutral 
(i.e. zero growth rate), and at the neutral point, the dispersion relation exhibits a 
square-root behaviour (and this implies the presence of a branch cut in k space). 

One of the questions that we answer in this paper is the extent to which these 
observations remain unaltered by the inclusion of viscosity and finite curvatures in 
the velocity profile, localized to the edges of the shear layer. 



554 T .  F .  Balsa 

y = + l  
i 

- t----- -+ 

- - 
y =  1 

+- 
X 

*- 

differentiable 
L- Piecewise 

linear 

FIQVRE 1.  Geometry of shear layer and base velocity profiles. (The inset shows the small overshoot 
associated with the infinitely differentiable profile). 

Esch (1957), presumably inspired by the simplicity of the piecewise linear profile 
and the novelty of digital computing, carried out a combined theoretical and 
numerical effort to understand the viscous (temporal) instability of this shear layer. 
Later, we shall have an occasion to make a direct comparison with his results which, 
unfortunately, are restricted to growing disturbances. 

Bechert (1972) examined the spatial instability of a piecewise linear shear layer 
in the inviscid limit. He obtained some curious results which are quite different from 
what might be expected for smoothly varying profiles on the basis of the results of 
Michalke (1965). 

The second issue which we address in this paper centres around the high 
Reynolds-number spatial instability of a near piecewise linear shear layer whose 
corners have been slightly rounded so that the profile is infinitely smooth. Through 
numerical solutions of the Orr-Sommerfeld equation, we establish that the spatial 
instability of this profile is quite meaningful when the flow is convectively unstable. 
The resemblance of this spatial instability to that of the inviscid piecewise linear 
profile is remarkable. Finally, we re-examine the Bechert results and explain why 
they are completely misleading. 

2. Relevant equations 

Sommerfeld equation (Drazin & Reid 1982 p. 156), 
The central equation of linear and parallel flow stability theory is the Orr- 

where 

and q5 = $(y) represents the cross-space structure of the y velocity component 
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Here, k = (k,, k,) denotes the complex wavenumber, w = w(k) is the (complex) 
dispersion relation, c = iw/k is the (complex) eigenvalue, and Re and U = U ( y )  denote 
the Reynolds number and the base velocity profile, respectively. The geometry of 
the shear layer is shown in figure 1.  The Rayleigh equation is recovered from the 
Orr-Sommerfeld equation by setting the right-hand side of ( l a )  to zero (i.e. 
Re = co, k =f= 0 fixed). 

It remains to specify the base velocity profiles, U = U ( y ) ,  and we shall consider 
the following three free-shear-layer flows with uniform external streams U,  and U, 
(without loss of generality, we take U,  2 U,): 

Piecewise linear profile (a profile of Rayleigh) 

U, = const 

U, = const 

(y 2 l ) ,  

(y < - 1). 
UmCl +BY)  ( I Y I  < 

InJinitely differentiable projile 

U(Y) = umr1 +RF(Y)l, ( 2 b )  

where F ( y )  is an infinitely differentiable odd function of y such that for y 3 0 we have 

with 6 = y - 1 .  The point is that 
arbitrarily closely as s+0, yet ( 
E = 0.3). 

( y  < 1 - 4 ,  

2b, c )  approximate the piecewise linear profile (2a ) ,  
b )  is infinitely smooth (in our calculations we set 

Of course, one of the key issues of this paper centres around the high-Reynolds- 
number spatial instability of the infinitely differentiable profile and the extent to 
which this instability can be reproduced by the inviscid results for the piecewise linear 
profile. Finally, for purposes of qualitative comparisons, we also examine the 
instability of the tanh profile. 

Tanh profile 
U ( y )  = U,(l+ R tanh y ) ,  

where Urn = t (U ,+  U,) = U(O), AU = U, - U, 2 0, and R = AU/2Um are the shear- 
layer mean velocity, velocity difference, and velocity ratio, respectively. For each 
velocity profile, the vorticity thickness is 2.  

These three velocity profiles are also shown in figure 1 for the velocity ratio 
R = 0.75. 

3.  Discussion of results 

dispersion relation for the piecewise linear profile (Rayleigh 1945 p. 393) 
In order to provide a familiar starting point for our discussion, we quote the inviscid 

AU 
w(k) = -ikUmf-[e-4k-(1-2k)2]~, 

4 (3) 

where the sign is associated with the unstable and stable modes once a suitable 
branch for the square root has been specified. [Note that (3) is a slight extension of 
the Rayleigh result and it is valid for k, 2 0.1 
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FIGURE 2. Inviscid temporal instability of piecewise linear profile : growth rate (oR) and phase 
speed (cR) as function of wavenumber k (U,  = 1, U, = - 1). 

3.1. Temporal instability ( U, = 1, U ,  = - 1)  
Although our main interest is in spatial instabilities, it is necessary to say a few words 
about temporal instabilities because the former are simply the analytic continuations 
of the latter into the complex wavenumber plane. We therefore begin with the 
temporal growth rate, oR = Re(w), and the phase speed, cR = Re (c), for the 
piecewise linear profile in the inviscid limit (figure 2).  These well-known results come 
from (3). The unstable mode basically exemplifies the kind of free-shear-flow in- 
stability that we have in mind. 

A most important characteristic of these results is the existence of a neutral point 
at k = k, z 0.6392. This neutral point is also a square-root branch point (i.e. 
k, = kB) as necessarily implied by the coalescence of the unstable and stable modes. 
Beyond the neutral point (i.e. for k > k N ) ,  the flow is precisely neutral and the shear 
layer sustains a fast mode (Urn < cR d U,)  and a slow mode (U ,  < cR < Urn).  Because 
of the existence of a branch point at k = k,, we must have a branch cut in the complex 
wavenumber space; in fact, the branch cut extends from k ,  x 0.6392 to plus infinity 
along the real axis. 

We now come to one of the central questions of this paper: To what extent are 
these observations on the inviscid instability of the piecewise linear profile robust in 
the sense that these observations still survive after the inclusion of viscosity and finite 
curvatures of the base velocity profile (in the vicinity of y = & 1 )  ? 
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FIQLTRE 3. Temporal instability of infinitely differentiable profile: growth rate (wR) as a 

function of wavenumber k. Re = 100, IT, = 1, I', = - 1. 

In order to answer this question, we obtained highly accurate numerical solutions 
to the Orr-Sommerfeld equation for the infinitely differentiable base velocity profile 
at various Reynolds numbers. The grid size ( h  = 8 x used in our calculations 
is small enough to resolve both the viscous critical layers and the details associated 
with the small overshoot (less than 1 O/,, in magnitude; see figure 1). 

A typical result for the temporal growth rate at Re = 100 is shown in figure 3. We 
once again find a branch point on the real axis (at k = k,), although the branch and 
neutral points are usually distinct. In fact, in this example, the neutral point, k = k,, 
represents the wavenumber at which a stable mode becomes unstable (rather than 
the place at which the unstable mode becomes stable). We have used several different 
techniques to verify that k = k ,  is indeed a square-root branch point and that the 
branch cut once again extends along the real axis from k ,  to plus infinity. To the 
right of the branch point, the growth rate is given by curve BC and the phase speeds 
are cR = rTm k S(k) for some numerically determined function 6 = S(k) .  The k sign 
in the last equation essentially corresponds to the fast and slow modes of figure 2. 
To the left of k,, the instability waves are non-dispersive with cR = trm. 

Furthermore, in our studies we have identified a square-root branch point on the 
real axis a t  all Reynolds numbers, even as low as Re = 25. In general, k ,  and k ,  are 
quite close to each other, although sometimes the point B (see figure 3) lies below 
the real axis (e.g. at Re = 25). In any case, for Re > 1000, the branch and neutral 
points are virtually indistinguishable. 

The Orr-Sommerfeld results for the infinitely differentiable base velocity profile 
clearly indicate that the square-root behaviour of dispersion relation ( 3 )  [i.e. 
w - ( k -  kB)i]  is totally unrelated to the piecewise nature of the base velocity profile 
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FIGURE 4. Temporal instability of infinitely differentiable profile: growth rate (oR) as a function 
of wavenumber (k) for several values of Reynolds number Re ( U ,  = 1, U, = - 1). 

or to any unphysical feature arising from the Rayleigh equation. This square-root 
behaviour is a generic result which will occur whenever the base velocity is sufficiently 
linear near the shear-layer centreline a t  y = 0. [The significance of y = 0 is that the 
base velocity is antisymmetric about this point so that the phase velocity of the 
unstable mode is cR = U(0)  = U,.] 

Next, let us look a t  the temporal instability of the infinitely differentiable profile 
for k > k ,  ( =  k B )  and at large Reynolds numbers. Some representative results are 
shown in figure 4. Interestingly enough, for this range of wavenumbers, the shear flow 
may be stable or unstable, although on physical grounds we certainly expect the flow 
to be stable as k + co . On the other hand, our calculations strongly suggest that as 
Re + 00, wR = 0 a t  all finite wavenumbers beyond the neutral point. In  other words, 
the critical wavenumber at which the growth rate first departs significantly from zero 
can be exiled to infinity by letting the Reynolds number approach infinity. 

These solutions of the Orr-Sommerfeld equation for the infinitely differentiable 
profile imply that an unstable mode for k < k, will become precisely neutral for 
k > k ,  when the Reynolds number is high enough. This conclusion, together with 
the one on the square-root behaviour of the dispersion relation, strongly suggests that 
the inviscid results for the piecewise linear profile (figure 2) are physically meaningful 
at all finite wavenumbers. Thus, these inviscid results are robust and remain 
unaltered by the inclusion of a small amount of viscosity and finite curvature of the 
base velocity at the edges of the shear layer! This conclusion will be reconfirmed by 
detailed comparisons for spatial instability. 

We digress, however, for a moment to compare our results with those of Esch 
(1957). Esch calculated the viscous instability of the piecewise linear profile, and his 
results for the neutral wavenumber (as a function of Reynolds number) are shown 
in figure 5. The good agreement between our calculations for the infinitely differen- 
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FIQURE 5. Neutral wavenumber k, as a function of Reynolds number; ITl = 1, I', - 1. 

tiable profile and Esch's results for the piecewise linear profile implies that the finite 
curvature of the base velocity profile at the edges of the shear layer has negligible 
influence on the basic instability of the shear layer arising from the velocity difference 
At' = tT, - lTz across the layer. 

3.2. Spatial Instability (t', = 0.5) 
Although the results for temporal instability were given for a specific shear layer with 

= 1, rTz = - 1, our conclusions are valid for any values of the external streams 
since temporal instability is Galilean invariant (of course, spatial instability is not). 
For our purposes, it is convenient to think of spatial instability as a curve in the 
complex wavenumber plane. Along this curve, wR = Re (0) = 0 and the frequency, 
wI = Im ( w ) ,  varies in some manner. The spatial growth rate is - L,. 

A typical result for the spatial instability of the infinitely differentiable profile is 
shown in figure 6 for a large Reynolds number. The curve of spatial instability, along 
which the frequency increases monotonically, originates at k = 0, proceeds to the 
right, and eventually intersects the branch cut at k = ks > k,. Along the branch cut, 
the spatial growth rate is zero. The existence of a branch cut can be clearly sensed 
by plotting neighbouring curves, say wR = k0.01. The agreement between these 
numerical results and the inviscid results for the piecewise linear profile, shown as 
dots in figure 6 [see (3)], is truly remarkable. This suggests very convincingly that 
the classical results of Rayleigh duplicate all aspects of the viscous, high-Reynolds- 
number (i.e. Re + x) spatial instability of our infinitely differentiable velocity profile 
at finite wavenumbers (see also figure 4). 

For reference, in figure 7, we show the curve of spatial instability for the tanh 
profile. This curve is very similar in the unstable range (k ,  < 0) to the one for the 
infinitely differentiable profile (figure 6). At wavenumbers corresponding to stability 
( k ,  2 O ) ,  disturbances in the tanh profile are damped whereas those in the infinitely 
differentiable profile are exactly neutral. This latter difference between these two 
shear layers is very interesting mathematically, but physically it is quite insignificant 
since damped or neutral modes usually do not play an important role in a shear layer 
that is violently unstable. 



560 

Stable 

Stable 

t 

L 

I I I I I I I I I 

T. F .  Balsa 

-0.2 

I 

- 
wR = 0 (spatial instability) 

T 
Unstable 

0 

.0.2 t\\- 
-wR = 0.01 

= 0 (spatial instability) F --\ = -0.01 

FIQURE 6. The curve of spatial instability for the infinitely differentiable profile; R = 0.75, 
Re = 1.33 x lo4, .Ym = 0.5. 0 ,  inviscid results for piecewise linear profile from (3). 

Finally, in order to dramatically reinforce one of our principal conclusions, namely, 
that the inviscid spatial instability of the piecewise linear profile captures the viscous 
instabilities of an infinitely differentiable profile (which resembles the piecewise 
linear one) at large Reynolds numbers, we present figure 8. Note that the viscous 
calculations indicate that the spatially unstable mode becomes precisely neutral for 
frequencies larger than the neutral frequency, SZ,. This is in exact agreement with 
the inviscid results for the piecewise linear profile. 

In  addition, in figure 8 we also show a qualitative comparison between the spatial 
growth rates of the tanh and piecewise linear profiles at a velocity ratio of 0.5. The 
two results are quite similar - the maximum spatial growth rates are about the same 
(they also occur at about the same frequency), although the range of frequencies for 
which the flow is unstable is narrower for the piecewise linear profile. The last remark 
is also completely consistent with the characteristics of the temporal stability of these 
two base flows and stems from the fact that, in the vicinity of y = 0,  the piecewise 
linear profile is perfectly straight. As a side observation, we point out that free shear 
layers can be made stable a t  the higher frequencies by straightening the velocity 
profile near y = 0. (The significance of the point y = 0 has been mentioned already.) 
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FIGTRE 8. Spatial growth rate ( -  k, )  as a function of frequency ( -wI); R = 0.5, Re = 1.33 x lo4, 
P, = 0.5. 0 ,  Inviscid result for piecewise linear profile. 

The dependence of spatial instability (k, < 0)  on velocity ratio is shown in figure 9.  
The main effect of increasing velocity ratio is to depress the curves (i.e. to increase 
the spatial growth rates) in both instances. The qualitative similarity between the 
spatial instability of the tanh and piecewise linear profiles is quite evident. 

In addition to these obvious remarks, the results in figure 9(b )  bring up a subtle 
point: Note that as the velocity ratio, R, increases, the intersection of the spatial 
instability curve with the branch cut, ks, moves to the right. An important question 
is what happens to the spatial instability curve as ks recedes to plus infinity (if this 
is indeed possible) ? These remarks naturally lead us to the concepts of convective 
and absolute instability. 

3.3 Convective and absolute instability 

For IT, > 0 (recall 2 V,), the piecewise linear profile is convectively unstable. This 
means that a periodic excitation of the shear layer at  frequency wI, for which the 
flow is spatially unstable, leads to a spatial instability mode as x + X ,  t + OC. (For 
a more detailed discussion of convective and absolute instability, see Huerre & 
Monkewitz 1985.) On the other hand, when r', = 0,  the velocity ratio is unity and 
the piecewise linear shear layer is absolutely unstable (Balsa 1986). In this case, a 
spatial instability mode can never arise in a properly posed initial-value problem 
which satisfies causality. For this case, the intersection point, ks,  is a t  plus infinity. 

It is possible to show that whenever the piecewise linear profile is convectively 
unstable, the curve of spatial instability is unique there is only one curve at each 
velocity ratio; that curve is shown in figure 9(b) .  On the other hand, when the flow 
is absolutely unstable (say, I', = 0 or R = l ) ,  there may be many curves of spatial 
instability. Some of these curves are shown in figure 10 (a) .  The corresponding spatial 
growth rates, as functions of frequency, are given in figure 10 (b) ,  which is reproduced 
from Bechert (1972). The lowest branch in figure 10 ( 6 )  corresponds to the uppermost 
curve of figure l o f a ) ,  and all the other branches correspond to each other in 
succession. The frequency varies from the value indicated (near the big dot) to 0.25 
at infinity. 
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velocity profile ( R  = 1) and the Bechert Christmas tree. 



Spatial instability of piecewise linear free shear layers 563 

When figures 10(b)  and 8 are compared, even qualitatively, it is clear that the 
results in figure 10 ( b )  appear unphysical. Because of this, it is often claimed that the 
spatial instability of the piecewise linear profile is meaningless. This claim is wrong 
because i t  applies only in the situation where the shear layer is absolutely unstable, 
and in this case, spatial instability is meaningless in the context of a properly posed 
initial-value problem that satisfies causality. [A word of caution: Since the entire 
branch cut is part of the wR = 0 curve only when Re --f co, one must be very careful 
about the limit process Re-tco and R+1 (see figure 4 ) .  In order to retain our 
conclusions, it is best to say that Re + 1 and R is not too close to unity so that the 
spatial instability curve will indeed intersect the real axis.] 

Spatial instability is meaningful only for convectively unstable flow (0 < R < 1).  
In this case, the spatial instability of the piecewise linear flow is quite acceptable 
on physical grounds and agrees extremely well with the viscous instability of the 
infinitely differentiable profile (figure 8). Any quantitative difference between the 
instability characteristics of the tanh and piecewise linear profiles is attributable to 
the fact that these profiles are not identical, though both are infinitely smooth. 

4. Conclusions 
We have shown through numerical solutions of the Orr-Sommerfeld equation that 

the temporal and spatial instabilities of our infinitely differentiable velocity profile 
a t  finite wavenumbers and very large Reynolds numbers (strictly as Re+co) are 
virtually identical with those of the inviscid instabilities of a piecewise linear profile 
of Rayleigh. In  particular, the unstable mode, upon passing through the neutral 
point, becomes exactly neutral rather than damped. This is undoubtedly due to the 
fact that the velocity profile in the vicinity of y = 0 is assumed to be perfectly 
straight. 

Our results also show that the spatial instability of the piecewise linear profile is 
quite meaningful as long as the flow is convectively unstable. Furthermore, the 
conclusions of this paper reinforce an important point about spatial instability ; 
namely, it is not enough to compute spatial growth rates without knowing how these 
fit into the complex dispersion relation o = w(k)  and the initial-value problem. 

The author is grateful to NASA Lewis Research Center for financial support under 
Grant NAG 3-485. 

REFERENCES 

BALSA, T. F. 1986 On the receptivity of free shear layers (to be published). 
BECHERT, D. 1972 Uber mehrfache und stromauf laufende Wellen in Freistrahlen. DFVLR Rep. 

DRAZIN, P. G. & REID, W. H. 1982 Hydrodynamic Stability. Cambridge University Press. 
ESCH, R.  E. 1957 The instability of a shear layer between two parallel steams. J .  Fluid Mech. 3 ,  

HUERRE, P .  & MONKEWITZ, P. 1985 Absolute and convective instabilities in free shear layers. 

MICHALKE, A. 1965 On spatially growing disturbances in an inviscid shear layer. J .  Fluid Mech. 

RAYLEIOH, LORD 1945 The Theory of Sound, vol. 2. Dover. 

DLR-FB 72-06. 

289-303. 

J .  Fluid Mech. 159, 151-168. 

23, 521-544. 




